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Abstract

Much work has sought to discern the different types of cloud regimes, typically via Euclidean
k-means clustering of histograms. However, these methods ignore the underlying similarity
structure of cloud types. Wasserstein k-means clustering is a promising candidate for utilizing
this structure during clustering, but existing algorithms do not scale well and lack the quality
guarantees of the Euclidean case. We resolve this by generalizing k-means++ guarantees to the
Wasserstein setting and providing a scalable minibatch algorithm for Wasserstein k-means. Our
methods empirically perform well and lead to new, different cloud regime prototypes.

1 Motivation

Given the climatic importance of clouds, much recent work has focused on identifying and then
analyzing the main cloud regimes [Jakob and Tselioudis, 2003; Rossow et al., 2005a,b; Williams
and Tselioudis, 2007; Williams and Webb, 2009; Tselioudis et al., 2013; McDonald et al., 2016].
Once determined, these regimes are used in many settings, e.g., assessing general circulation
models [Williams and Webb, 2009; Mason et al., 2015], and therefore accurately identifying these
regimes is crucial to understanding the climate system.

The vast majority of work applies k-means clustering to joint histograms of cloud top pressure
(PC) and optical depth (TAU) (henceforth PC-TAU histograms of “cloud types”), e.g. [Jakob and
Tselioudis, 2003; Rossow et al., 2005a; Tselioudis et al., 2013]. Histograms are treated as vectors and
compared via the Euclidean distance between them. This approach scales well to large datasets but
ignores the latent structure of the data, in particular the similarity between different cloud types.
Moreover, the clustering problem is solved via Lloyd’s algorithm [Lloyd, 1982], which is empirically
effective but gives no guarantees about the cluster quality.

Instead, we apply histogram clustering techniques based on Wasserstein distance [Villani, 2009],
a metric between probability distributions (or histograms) that respects the underlying geometry of
the space, in this case the similarity structure of cloud types. As illustrated in Figure 1, histograms
with similar frequencies for similar cloud types are close in this metric, in contrast to Euclidean
distance, which ignores cloud type similarity. We further 1) show that k-means++ seeding [Arthur
and Vassilvitskii, 2007], which gives provably good cluster seedings in the Euclidean case, yields
the same guarantee for the Wasserstein metric, 2) provide an efficient minibatch algorithm for
Wasserstein k-means that scales to climate data, and 3) show histogram clustering can yield notably
different cloud regimes than identified via Euclidean k-means.
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Figure 1: In Euclidean distance, EX1 is equally far from EX2 and EX3. In the specific Wasserstein
distance defined in Section 4, EX3 is over 20 times farther from EX1 than EX2 is from EX1, because
EX1 and EX2 are concentrated on similar PC-TAU cells.

2 Theoretical Background

Given a set of points {xi}i∈I , metric k-means clustering seeks to find a set of centroids C = {cj}kj=1

in a convex set K (e.g. the probability simplex) minimizing

φ(C) =
∑
i∈I

min
j=1,...,k

d(xi, cj)2. (1)

Typically d is taken to be the Euclidean distance, d(x, y) =
√∑

i(xi − yi)2. In this setting, Lloyd’s
algorithm [Lloyd, 1982], which alternates between assigning points xi to the closest cluster centroid
cj and replacing cj with the mean of the points assigned to it, converges to a local optimum but lacks
other guarantees: in fact, finding an optimal set C of centroids is NP-hard [Aloise et al., 2009]. The
k-means++ seeding algorithm alleviates this problem: this efficient, randomized algorithm produces
an O(log k)-optimal clustering in expectation [Arthur and Vassilvitskii, 2007]. This solution can
then be fine-tuned by Lloyd’s algorithm. This result has been extended to the case when d(x, y)2

is replaced by a Bregman or total Jensen divergence [Sra et al., 2008; Nielsen and Nock, 2013].
Results for general metrics exist for other seeding algorithms, e.g. [Ahmadian et al., 2017], but these
scale poorly and are hence impractical; to our knowledge, the general metric case has not yet been
addressed for k-means++.

In contrast to Euclidean distance, Wasserstein distance between distributions µ and ν on points
{yi}ni=1 accounts for the “cost” Cij of moving yi to yj . Viewing µ and ν as two piles of dirt, we can
define a notion of distance between them: how much dirt must we move how far to transform one
pile into the other, moving dirt as efficiently as possible? Formally, if Cij = g(yi, yj)p for a distance
metric g, the p-Wasserstein distance Wp(µ, ν) is defined as the value of the linear program

min 〈C, T 〉1/p ≡ min (
∑

ij CijTij)
1/p

s.t. 1TT = µ, 1TT T = ν, T ≥ 0.
(2)
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Algorithm 1 Minibatch metric k-means
Input: point set X, parameter k
{cj}kj=1 ← k-means++Initialization(X, k)
nj ← 0 for j = 1, . . . , k . Cluster sizes
loop

Draw x1, . . . , xm ∼ X
si ← argminj=1,...,k d(x

i, cj)2 for i = 1, . . . ,m
for i = 1, . . . ,m do

j ← si . Cluster index assigned for xi
γ ← 1/nj
cj ← projK(cj − γ∇c[d(x

i, cj)2])
nj ← nj + 1

end for
end loop

The joint distribution T is a “transport plan” that moves mass from µ to ν. A full discussion of
Wasserstein distance and optimal transport is outside the scope of this paper; we refer the reader
to [Villani, 2009; Santambrogio, 2015] for theoretical foundations, and [Pele and Werman, 2009;
Cuturi, 2013; Genevay et al., 2016] for computing Wasserstein distance. In our clustering formulation,
we use d(xi, cj) =Wp(x

i, cj).
Wasserstein distance has been applied to a limited extent to histogram clustering [Li and Wang,

2008; Ye et al., 2017]. The main computational challenge is computing the centroid, i.e., the
Wasserstein barycenter of the measures in one cluster, in place of the Euclidean mean. Reasonably
efficient barycenter algorithms exist [Cuturi and Doucet, 2014; Ye et al., 2017; Staib et al., 2017] but
scaling to large datasets remains an active research area.

3 Theory and Algorithm

We sample initial cluster centroids via k-means++ seeding where we replace the Euclidean by
Wasserstein distance. Then we fine-tune the seeding with a stochastic minibatch k-means algorithm
suitable for large scale climate data. Our Theorem 3.1 states an approximation guarantee for our
method; the seeding guarantee is proved by building on results from Nielsen and Sun [2017, Theorem
2]:

Theorem 3.1. Suppose centroids C are chosen via k-means++ seeding applied to any metric d (e.g.
d =Wp). Then the objective function φ(C) satisfies

E[φ(C)] ≤ 8(ln k + 2)min
C∗

φ(C∗). (3)

Proof. For any metric d, by squaring the triangle inequality we have:

d(x, y)2 ≤ (d(x, z) + d(z, y))2

= d(x, z)2 + d(z, y)2 + 2d(x, z)d(z, y).

By the arithmetic mean-geometric mean inequality,

2d(x, z)d(z, y) ≤ d(x, z)2 + d(z, y)2.
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Combining these, it follows that

d(x, y)2 ≤ 2(d(x, z)2 + d(z, y)2),

i.e. in the language of Nielsen and Sun [2017], d2 satisfies the 2-approximate triangle inequality. The
result then follows from [Nielsen and Sun, 2017, Theorem 2].

Once an initial seeding is selected, Lloyd’s algorithm can be applied to fine-tune the clustering,
and can only improve the objective value. However, updating the centroids requires expensive full
passes over the dataset.

A more scalable alternative is a variant of online or minibatch gradient descent applied to
Problem (1). In particular, we generalize an algorithm from Sculley [2010] to the Wasserstein case.
The result is our algorithmic contribution: Algorithm 1 enjoys the guarantees of Theorem 3.1, and
efficiently fine-tunes the clusters without many expensive passes over the entire dataset. In particular,
for Wp distances, we can compute the required gradients ∇c[d(x

i, cj)2] via linear programming and
the chain rule, and project efficiently onto the simplex K [Held et al., 1974; Michelot, 1986; Duchi
et al., 2008]. Note that we accomplish this without ever needing to compute a Wasserstein barycenter,
in contrast to past work on histogram clustering.

4 Experiments

Experimental setup. We applied our clustering framework to PC-TAU histograms from the
International Satellite Cloud Climatology Project (ISCCP) [Rossow and Dueñas, 2004]. We focused
specifically on data from the tropical region within 15◦ of the equator as in [Rossow et al., 2005a], in
3 hour increments from 1994-2009.

Wasserstein distances depend on a “ground” distance metric g between points: we built the
ground metric g by mapping the cloud top pressure and optical depth pairs to an equally-spaced grid
in R2 and using Euclidean distance. An extra “no cloud” state is added with constant distance 0.5D
to each other state as in [Pele and Werman, 2009], where D is the maximum distance otherwise.
We ran Algorithm 1 for 20 iterations with minibatch sizes of m = 1000. Gradients ∇c[d(x

i, cj)2]
were computed using Gurobi [Gurobi Optimization, 2016], and each outer iteration took about 10
seconds on a modern 8-core desktop computer. The initial k-means++ seeding was approximated
using the algorithm from [Bachem et al., 2016], with 2000 burn-in steps.

Both Euclidean and Wasserstein-based clustering were tested. Prior work had carefully determined
the number of clusters k by analyzing correlations between cluster centroids [Rossow et al., 2005a,b;
Williams and Tselioudis, 2007; Tselioudis et al., 2013]. In the Euclidean case, we chose k = 6 to
match [Rossow et al., 2005a]. In the Wasserstein case, we instead analyzed the minimum Wp distance
between cluster centroids, seeking a balance between a low objective value and spread out centroids.

Results. First, we applied Algorithm 1 to the standard Euclidean setting, producing cluster
centroids (weather states) as shown in Figure 2. We essentially reproduce the same weather states
as in [Rossow et al., 2005a] for the same tropical region.

We then clustered with respect to Wp distance, for p ∈ {1, 2}. Qualitatively, p = 2 led to
centroids that are more spread out, as W2 induces a lower penalty for moving mass between very
close points. Hence, we focus on p = 1 in this paper. Table 3 shows the minimum W1 distances
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Figure 2: Weather states (cluster centroids) produced by Algorithm 1 applied to Euclidean distance.
Note the similarity to those from [Rossow et al., 2005a]. RFO is relative frequency of occurence;
TCC is total cloud cover.

k 4 5 6 7 8

W1(c
i, cj)2 0.283 0.244 0.168 0.141 0.174

φ(C)/|I| 0.107 0.098 0.086 0.078 0.074

Figure 3: Minimum squared Wasserstein distance W1(c
i, cj)2 between cluster centroids and the

scaled k-means objective value φ(C), as the number of clusters k varies. Note that the nearest
distance drops considerably from k = 5 to k = 6.
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Figure 4: Weather states from Algorithm 1 applied to W1 distance. RFO is relative frequency of
occurence; TCC is total cloud cover.

between cluster centroids, together with estimates of φ(C). There is a notable dropoff in minimum
distance after k = 5 without great improvement in the objective, so 5 clusters were chosen.

The resulting k = 5 weather states (WS) are shown in Figure 4. For each point in the tropical
region, we give in Figure 5 a visual breakdown of how frequently that point belongs to each weather
state (c.f. [Rossow et al., 2005a, Figure 2]). There are clear correspondences between the Euclidean-
derived weather states and the Wasserstein ones. Note that Euclidean WS1, WS4, and WS5 split
into Wasserstein WS3 and WS5. These Euclidean weather states are more muddled, having very
similar total cloud cover and concentration (under g); in contrast, their Wasserstein counterparts
have similar concentration, but notably different total cloud cover.

5 Discussion

We propose Wasserstein histogram clustering as a way to leverage prior knowledge about similarity
and geometry in learning from climate datasets. We demonstrate that Wasserstein k-means++
clustering is achievable at large scale and with provable guarantees. Applying these techniques to
cloud regimes yields different inferred weather states than Euclidean clustering.

For determining cloud regimes, we still need a principled way to select the ground distance metric
between cloud types, perhaps via metric learning. Further in-depth analysis of these new, different
weather states is needed, and of cloud regimes beyond the tropics considered here. More generally,
identifying new geometry-aware clustering tasks in climate science is fertile ground for future work.
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Figure 5: Heatmaps for weather states 1 (top) through 5 (bottom). On the heatmap for one weather
state, each point is colored according to how often it belongs to that state.
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